
A Survey of Verifiable Delegation of Computations

Rosario Gennaro

The City College of New York

rosario@cs.ccny.cuny.edu

September 12, 2013



Outline Motivation Verifiable Computation Memory Delegation Conclusion

Talk Outline

Motivation

Cloud computing, Small Devices, Large Scale Computation

Generic Results for Verifiable Computation

Protocols that work for arbitrary computations
Interactive Proofs
Probabilistically Checkable Proofs
"Muggles" Proofs
Other Arithmetizations approaches (QSP)
Implementations (Pinocchio, Snark-for-C)

Delegation of Memory

Homomorphic MACs
Proofs of Retrievability
Verifiable Keyword Search



Outline Motivation Verifiable Computation Memory Delegation Conclusion

Talk Outline

Motivation

Cloud computing, Small Devices, Large Scale Computation

Generic Results for Verifiable Computation

Protocols that work for arbitrary computations
Interactive Proofs
Probabilistically Checkable Proofs
"Muggles" Proofs
Other Arithmetizations approaches (QSP)
Implementations (Pinocchio, Snark-for-C)

Delegation of Memory

Homomorphic MACs
Proofs of Retrievability
Verifiable Keyword Search



Outline Motivation Verifiable Computation Memory Delegation Conclusion

Talk Outline

Motivation

Cloud computing, Small Devices, Large Scale Computation

Generic Results for Verifiable Computation

Protocols that work for arbitrary computations
Interactive Proofs
Probabilistically Checkable Proofs
"Muggles" Proofs
Other Arithmetizations approaches (QSP)
Implementations (Pinocchio, Snark-for-C)

Delegation of Memory

Homomorphic MACs
Proofs of Retrievability
Verifiable Keyword Search



Outline Motivation Verifiable Computation Memory Delegation Conclusion

Computing on Demand

Cloud Computing
Businesses buy computing power from a service provider

Advantages
No need to provision and maintain hardware
Pay for what you need
Easily and quickly scalable up or down

Trust Issues
Transfer possibly confidential data to computing service provider
Trust computation is performed correctly without errors
Malicious or benign



Outline Motivation Verifiable Computation Memory Delegation Conclusion

Computing on Demand

Cloud Computing
Businesses buy computing power from a service provider

Advantages
No need to provision and maintain hardware
Pay for what you need
Easily and quickly scalable up or down

Trust Issues
Transfer possibly confidential data to computing service provider
Trust computation is performed correctly without errors
Malicious or benign



Outline Motivation Verifiable Computation Memory Delegation Conclusion

Computing on Demand

Cloud Computing
Businesses buy computing power from a service provider

Advantages
No need to provision and maintain hardware
Pay for what you need
Easily and quickly scalable up or down

Trust Issues
Transfer possibly confidential data to computing service provider
Trust computation is performed correctly without errors
Malicious or benign



Outline Motivation Verifiable Computation Memory Delegation Conclusion

Small Devices

Small devices outsourcing complex computing problems to larger
servers

Photo manipulations
Cryptographic operations

Same issues:
Confidentiality of data
Correctness of result



Outline Motivation Verifiable Computation Memory Delegation Conclusion

Small Devices

Small devices outsourcing complex computing problems to larger
servers

Photo manipulations
Cryptographic operations

Same issues:
Confidentiality of data
Correctness of result



Outline Motivation Verifiable Computation Memory Delegation Conclusion

Large Scale Computations

Network-based computations
SETI@Home
Folding@Home

Users donate idle cycles
Known problem: users return fake results without performing the
computation
Increases their ranking

Needed a way to efficiently weed out bad results
Currently use redundancy



Outline Motivation Verifiable Computation Memory Delegation Conclusion

Large Scale Computations

Network-based computations
SETI@Home
Folding@Home

Users donate idle cycles
Known problem: users return fake results without performing the
computation
Increases their ranking

Needed a way to efficiently weed out bad results
Currently use redundancy



Outline Motivation Verifiable Computation Memory Delegation Conclusion

Large Scale Computations

Network-based computations
SETI@Home
Folding@Home

Users donate idle cycles
Known problem: users return fake results without performing the
computation
Increases their ranking

Needed a way to efficiently weed out bad results
Currently use redundancy



Outline Motivation Verifiable Computation Memory Delegation Conclusion

Verifiable Computation

The client sends a function F and an input x to the server

The server returns y = F (x) and a proof ⇧ that y is correct.
Verifying ⇧ should take less time than computing F .



Outline Motivation Verifiable Computation Memory Delegation Conclusion

Verifiable Computation

The client sends a function F and an input x to the server

The server returns y = F (x) and a proof ⇧ that y is correct.
Verifying ⇧ should take less time than computing F .



Outline Motivation Verifiable Computation Memory Delegation Conclusion

Interactive Proofs (GMR,B)

An all powerful Prover interacts with a poly-time Verifier
Prover convinces Verifier of a statement she cannot decide on her own
Probabilist guarantee
All of PSPACE can be proven this way [LFKN,S]

We want something different
A scaled back version of this protocols for efficient computations
A powerful but still efficient prover: its complexity should be as close
as possible to the original computation
A super-efficient Verifier: ideally linear time



Outline Motivation Verifiable Computation Memory Delegation Conclusion

Interactive Proofs (GMR,B)

An all powerful Prover interacts with a poly-time Verifier
Prover convinces Verifier of a statement she cannot decide on her own
Probabilist guarantee
All of PSPACE can be proven this way [LFKN,S]

We want something different
A scaled back version of this protocols for efficient computations
A powerful but still efficient prover: its complexity should be as close
as possible to the original computation
A super-efficient Verifier: ideally linear time



Outline Motivation Verifiable Computation Memory Delegation Conclusion

Muggles Proofs (GKR)

Poly-time Prover interacts with a quasi-linear Verifier
Refines the proof that IP=PSPACE to efficient computations

For a log-space uniform NC circuit of depth d

Prover runs in poly(n)
Verifier runs in O(n+ poly(d))
Interactive (O(d · log n) rounds)
Unconditional Soundness



Outline Motivation Verifiable Computation Memory Delegation Conclusion

Muggles Proofs (GKR)

Poly-time Prover interacts with a quasi-linear Verifier
Refines the proof that IP=PSPACE to efficient computations

For a log-space uniform NC circuit of depth d

Prover runs in poly(n)
Verifier runs in O(n+ poly(d))
Interactive (O(d · log n) rounds)
Unconditional Soundness



Outline Motivation Verifiable Computation Memory Delegation Conclusion

Optimizations and Implementations (CMT,T)

Prover can be implemented in O(S logS)

Where S is the size of the circuit computing the function
O(S) for circuits with a regular wiring pattern

Implementation tests show that for the regular wiring pattern case the
prover is less than 10x slower than simply computing the function.

Protocol remains highly interactive
Interaction can be removed via the Fiat-Shamir heuristic (random
oracle model).



Outline Motivation Verifiable Computation Memory Delegation Conclusion

Optimizations and Implementations (CMT,T)

Prover can be implemented in O(S logS)

Where S is the size of the circuit computing the function
O(S) for circuits with a regular wiring pattern

Implementation tests show that for the regular wiring pattern case the
prover is less than 10x slower than simply computing the function.

Protocol remains highly interactive
Interaction can be removed via the Fiat-Shamir heuristic (random
oracle model).



Outline Motivation Verifiable Computation Memory Delegation Conclusion

Optimizations and Implementations (CMT,T)

Prover can be implemented in O(S logS)

Where S is the size of the circuit computing the function
O(S) for circuits with a regular wiring pattern

Implementation tests show that for the regular wiring pattern case the
prover is less than 10x slower than simply computing the function.

Protocol remains highly interactive
Interaction can be removed via the Fiat-Shamir heuristic (random
oracle model).



Outline Motivation Verifiable Computation Memory Delegation Conclusion

Probabilistically Checkable Proofs

The IP=PSPACE result yielded a surprising consequence: any
computation can be associated with a (very long) proof which can be
queried in only a constant number of locations (...AMLSS, AS, ...)

The Prover commits to this proof using a Merkle tree and then the
Verifier queries it and verifies the openings (K)

Note that now we have an argument with a computational soundness
guarantee

This protocol can also be made non-interactive using the random
oracle (M) or strong extractability assumptions about the hash
function used in the protocol (DL,BCCT,GLR)

Main bottleneck: still the Prover’s complexity O(S1.5
)



Outline Motivation Verifiable Computation Memory Delegation Conclusion

Probabilistically Checkable Proofs

The IP=PSPACE result yielded a surprising consequence: any
computation can be associated with a (very long) proof which can be
queried in only a constant number of locations (...AMLSS, AS, ...)

The Prover commits to this proof using a Merkle tree and then the
Verifier queries it and verifies the openings (K)

Note that now we have an argument with a computational soundness
guarantee

This protocol can also be made non-interactive using the random
oracle (M) or strong extractability assumptions about the hash
function used in the protocol (DL,BCCT,GLR)

Main bottleneck: still the Prover’s complexity O(S1.5
)



Outline Motivation Verifiable Computation Memory Delegation Conclusion

Probabilistically Checkable Proofs

The IP=PSPACE result yielded a surprising consequence: any
computation can be associated with a (very long) proof which can be
queried in only a constant number of locations (...AMLSS, AS, ...)

The Prover commits to this proof using a Merkle tree and then the
Verifier queries it and verifies the openings (K)

Note that now we have an argument with a computational soundness
guarantee

This protocol can also be made non-interactive using the random
oracle (M) or strong extractability assumptions about the hash
function used in the protocol (DL,BCCT,GLR)

Main bottleneck: still the Prover’s complexity O(S1.5
)



Outline Motivation Verifiable Computation Memory Delegation Conclusion

Probabilistically Checkable Proofs

The IP=PSPACE result yielded a surprising consequence: any
computation can be associated with a (very long) proof which can be
queried in only a constant number of locations (...AMLSS, AS, ...)

The Prover commits to this proof using a Merkle tree and then the
Verifier queries it and verifies the openings (K)

Note that now we have an argument with a computational soundness
guarantee

This protocol can also be made non-interactive using the random
oracle (M) or strong extractability assumptions about the hash
function used in the protocol (DL,BCCT,GLR)

Main bottleneck: still the Prover’s complexity O(S1.5
)



Outline Motivation Verifiable Computation Memory Delegation Conclusion

Arithmetization

Turn a circuit computation into a set of polynomial equations
Replace each gate with a quadratic polynomial
Check these polynomial identities in a randomized fashion by checking
them on random points
Use error-correcting encodings to make sure that the proof is locally

checkable (i.e. to reduce the number of random queries to the proof)

Can we use different arithmetizations?
Avoid composing long PCP proofs with compressing hash functions for
a more direct way to get short proofs
Linear Prover complexity?

Groth showed a different approach
Polynomial equations are verified in the exponent (using bilinear maps
over a cyclic group)
A Diffie-Hellman type of assumption prevents the Prover from cheating
Proof is very compact without using Merkle trees
Drawback: quadratic prover complexity and a quadratic CRS
Lipmaa shows how to reduce those to quasilinear



Outline Motivation Verifiable Computation Memory Delegation Conclusion

Arithmetization

Turn a circuit computation into a set of polynomial equations
Replace each gate with a quadratic polynomial
Check these polynomial identities in a randomized fashion by checking
them on random points
Use error-correcting encodings to make sure that the proof is locally

checkable (i.e. to reduce the number of random queries to the proof)

Can we use different arithmetizations?
Avoid composing long PCP proofs with compressing hash functions for
a more direct way to get short proofs
Linear Prover complexity?

Groth showed a different approach
Polynomial equations are verified in the exponent (using bilinear maps
over a cyclic group)
A Diffie-Hellman type of assumption prevents the Prover from cheating
Proof is very compact without using Merkle trees
Drawback: quadratic prover complexity and a quadratic CRS
Lipmaa shows how to reduce those to quasilinear



Outline Motivation Verifiable Computation Memory Delegation Conclusion

Arithmetization

Turn a circuit computation into a set of polynomial equations
Replace each gate with a quadratic polynomial
Check these polynomial identities in a randomized fashion by checking
them on random points
Use error-correcting encodings to make sure that the proof is locally

checkable (i.e. to reduce the number of random queries to the proof)

Can we use different arithmetizations?
Avoid composing long PCP proofs with compressing hash functions for
a more direct way to get short proofs
Linear Prover complexity?

Groth showed a different approach
Polynomial equations are verified in the exponent (using bilinear maps
over a cyclic group)
A Diffie-Hellman type of assumption prevents the Prover from cheating
Proof is very compact without using Merkle trees
Drawback: quadratic prover complexity and a quadratic CRS
Lipmaa shows how to reduce those to quasilinear



Outline Motivation Verifiable Computation Memory Delegation Conclusion

Quadratic Span Programs (GGPR)

QSPs add a single quadratic step to the computation, instead of checking
several quadratic equations (one for each gate)

To check that all the wires in the circuits are correct it just requires a
linear test (span program)
This would be too much work for the verifier (same as the size of the
circuit)
Build two copies of the "checking" span program and test them
against each other
A QSP is defined by two sets of polynomials V = {v1, .., vn+m},
W = {w1, .., wn+m} and a target polynomial t

We say that a QSP (V,W, t) computes a Boolean function F of n
inputs if and only if
For all x = (x1 . . . xn) s.t. F (x) = 1

t divides the product of a linear combination of subsets of V and W

t|(⌃n
i=1aivi) · (⌃n

i=1biwi)
where ai = bi = 0 iff xi = 0



Outline Motivation Verifiable Computation Memory Delegation Conclusion

Quadratic Span Programs (GGPR)

QSPs add a single quadratic step to the computation, instead of checking
several quadratic equations (one for each gate)

To check that all the wires in the circuits are correct it just requires a
linear test (span program)
This would be too much work for the verifier (same as the size of the
circuit)
Build two copies of the "checking" span program and test them
against each other
A QSP is defined by two sets of polynomials V = {v1, .., vn+m},
W = {w1, .., wn+m} and a target polynomial t

We say that a QSP (V,W, t) computes a Boolean function F of n
inputs if and only if
For all x = (x1 . . . xn) s.t. F (x) = 1

t divides the product of a linear combination of subsets of V and W

t|(⌃n
i=1aivi) · (⌃n

i=1biwi)
where ai = bi = 0 iff xi = 0



Outline Motivation Verifiable Computation Memory Delegation Conclusion

Quadratic Span Programs (GGPR)

QSPs add a single quadratic step to the computation, instead of checking
several quadratic equations (one for each gate)

To check that all the wires in the circuits are correct it just requires a
linear test (span program)
This would be too much work for the verifier (same as the size of the
circuit)
Build two copies of the "checking" span program and test them
against each other
A QSP is defined by two sets of polynomials V = {v1, .., vn+m},
W = {w1, .., wn+m} and a target polynomial t

We say that a QSP (V,W, t) computes a Boolean function F of n
inputs if and only if
For all x = (x1 . . . xn) s.t. F (x) = 1

t divides the product of a linear combination of subsets of V and W

t|(⌃n
i=1aivi) · (⌃n

i=1biwi)
where ai = bi = 0 iff xi = 0



Outline Motivation Verifiable Computation Memory Delegation Conclusion

Quadratic Span Programs (GGPR)

QSPs add a single quadratic step to the computation, instead of checking
several quadratic equations (one for each gate)

To check that all the wires in the circuits are correct it just requires a
linear test (span program)
This would be too much work for the verifier (same as the size of the
circuit)
Build two copies of the "checking" span program and test them
against each other
A QSP is defined by two sets of polynomials V = {v1, .., vn+m},
W = {w1, .., wn+m} and a target polynomial t

We say that a QSP (V,W, t) computes a Boolean function F of n
inputs if and only if
For all x = (x1 . . . xn) s.t. F (x) = 1

t divides the product of a linear combination of subsets of V and W

t|(⌃n
i=1aivi) · (⌃n

i=1biwi)
where ai = bi = 0 iff xi = 0



Outline Motivation Verifiable Computation Memory Delegation Conclusion

Quadratic Span Programs (GGPR)

QSPs add a single quadratic step to the computation, instead of checking
several quadratic equations (one for each gate)

To check that all the wires in the circuits are correct it just requires a
linear test (span program)
This would be too much work for the verifier (same as the size of the
circuit)
Build two copies of the "checking" span program and test them
against each other
A QSP is defined by two sets of polynomials V = {v1, .., vn+m},
W = {w1, .., wn+m} and a target polynomial t

We say that a QSP (V,W, t) computes a Boolean function F of n
inputs if and only if
For all x = (x1 . . . xn) s.t. F (x) = 1

t divides the product of a linear combination of subsets of V and W

t|(⌃n
i=1aivi) · (⌃n

i=1biwi)
where ai = bi = 0 iff xi = 0



Outline Motivation Verifiable Computation Memory Delegation Conclusion

The QSP protocol

In a preprocessing stage the Verifier publishes the values gs
i , gvi(s),

gwi(s) and gt(s)

for a secret random value s.
On input x the server finds the coefficients ai, bi and polynomial h
such that

t · h = (⌃

n
i=1aivi) · (⌃n

i=1biwi)

Using the values produced by the Verifier the Prover can evaluate in

the exponent the above equation at the point s
Verifier checks the equation using bilinear maps

Efficiency:
The verifier is linear to prepare the input; constant time to verify the
result
Prover is quasi-linear - the polylog overhead comes from doing
polynomial division to compute h

Security: requires a Diffie-Hellman type of assumption which assumes
that the prover cannot divide in the exponent.



Outline Motivation Verifiable Computation Memory Delegation Conclusion

The QSP protocol

In a preprocessing stage the Verifier publishes the values gs
i , gvi(s),

gwi(s) and gt(s)

for a secret random value s.
On input x the server finds the coefficients ai, bi and polynomial h
such that

t · h = (⌃

n
i=1aivi) · (⌃n

i=1biwi)

Using the values produced by the Verifier the Prover can evaluate in

the exponent the above equation at the point s
Verifier checks the equation using bilinear maps

Efficiency:
The verifier is linear to prepare the input; constant time to verify the
result
Prover is quasi-linear - the polylog overhead comes from doing
polynomial division to compute h

Security: requires a Diffie-Hellman type of assumption which assumes
that the prover cannot divide in the exponent.



Outline Motivation Verifiable Computation Memory Delegation Conclusion

The QSP protocol

In a preprocessing stage the Verifier publishes the values gs
i , gvi(s),

gwi(s) and gt(s)

for a secret random value s.
On input x the server finds the coefficients ai, bi and polynomial h
such that

t · h = (⌃

n
i=1aivi) · (⌃n

i=1biwi)

Using the values produced by the Verifier the Prover can evaluate in

the exponent the above equation at the point s
Verifier checks the equation using bilinear maps

Efficiency:
The verifier is linear to prepare the input; constant time to verify the
result
Prover is quasi-linear - the polylog overhead comes from doing
polynomial division to compute h

Security: requires a Diffie-Hellman type of assumption which assumes
that the prover cannot divide in the exponent.



Outline Motivation Verifiable Computation Memory Delegation Conclusion

The QSP protocol

In a preprocessing stage the Verifier publishes the values gs
i , gvi(s),

gwi(s) and gt(s)

for a secret random value s.
On input x the server finds the coefficients ai, bi and polynomial h
such that

t · h = (⌃

n
i=1aivi) · (⌃n

i=1biwi)

Using the values produced by the Verifier the Prover can evaluate in

the exponent the above equation at the point s
Verifier checks the equation using bilinear maps

Efficiency:
The verifier is linear to prepare the input; constant time to verify the
result
Prover is quasi-linear - the polylog overhead comes from doing
polynomial division to compute h

Security: requires a Diffie-Hellman type of assumption which assumes
that the prover cannot divide in the exponent.



Outline Motivation Verifiable Computation Memory Delegation Conclusion

The QSP protocol

In a preprocessing stage the Verifier publishes the values gs
i , gvi(s),

gwi(s) and gt(s)

for a secret random value s.
On input x the server finds the coefficients ai, bi and polynomial h
such that

t · h = (⌃

n
i=1aivi) · (⌃n

i=1biwi)

Using the values produced by the Verifier the Prover can evaluate in

the exponent the above equation at the point s
Verifier checks the equation using bilinear maps

Efficiency:
The verifier is linear to prepare the input; constant time to verify the
result
Prover is quasi-linear - the polylog overhead comes from doing
polynomial division to compute h

Security: requires a Diffie-Hellman type of assumption which assumes
that the prover cannot divide in the exponent.



Outline Motivation Verifiable Computation Memory Delegation Conclusion

Implementation Results

Pinocchio (PGHR)
An end-to-end toolchain that compiles a subset of C into QSPs
Proof size is 288 bytes regardless of what it is being computed
Verification time is 10ms
Prover complexity still not quite there in practice

About 60 times faster than previous proposals
Can run some lightweight computations

SNARKs-for-C (BCGTV)
Given a C program, they produce a circuit whose satisfiability encodes
the correctness of execution of the program.

First the C program is compiled into machine code for TinyRAM
Then the TinyRam code is compiled into a circuit

A QSP is built for this circuit
Use the generic concept of Linear Interactive Proof

could plug a more efficient LIP if one is found
Slightly less efficient for the Verifier

Proof size 322 bytes
Verification time dependent on x (from 103ms to 5s for long inputs)

A bit more efficient for the Prover
Were able to handle a Traveling Salesman Decider on a 200-nodes
graph
Still it took almost 3 hours ...



Outline Motivation Verifiable Computation Memory Delegation Conclusion

Implementation Results

Pinocchio (PGHR)
An end-to-end toolchain that compiles a subset of C into QSPs
Proof size is 288 bytes regardless of what it is being computed
Verification time is 10ms
Prover complexity still not quite there in practice

About 60 times faster than previous proposals
Can run some lightweight computations

SNARKs-for-C (BCGTV)
Given a C program, they produce a circuit whose satisfiability encodes
the correctness of execution of the program.

First the C program is compiled into machine code for TinyRAM
Then the TinyRam code is compiled into a circuit

A QSP is built for this circuit
Use the generic concept of Linear Interactive Proof

could plug a more efficient LIP if one is found
Slightly less efficient for the Verifier

Proof size 322 bytes
Verification time dependent on x (from 103ms to 5s for long inputs)

A bit more efficient for the Prover
Were able to handle a Traveling Salesman Decider on a 200-nodes
graph
Still it took almost 3 hours ...



Outline Motivation Verifiable Computation Memory Delegation Conclusion

Implementation Results

Pinocchio (PGHR)
An end-to-end toolchain that compiles a subset of C into QSPs
Proof size is 288 bytes regardless of what it is being computed
Verification time is 10ms
Prover complexity still not quite there in practice

About 60 times faster than previous proposals
Can run some lightweight computations

SNARKs-for-C (BCGTV)
Given a C program, they produce a circuit whose satisfiability encodes
the correctness of execution of the program.

First the C program is compiled into machine code for TinyRAM
Then the TinyRam code is compiled into a circuit

A QSP is built for this circuit
Use the generic concept of Linear Interactive Proof

could plug a more efficient LIP if one is found
Slightly less efficient for the Verifier

Proof size 322 bytes
Verification time dependent on x (from 103ms to 5s for long inputs)

A bit more efficient for the Prover
Were able to handle a Traveling Salesman Decider on a 200-nodes
graph
Still it took almost 3 hours ...



Outline Motivation Verifiable Computation Memory Delegation Conclusion

Implementation Results

Pinocchio (PGHR)
An end-to-end toolchain that compiles a subset of C into QSPs
Proof size is 288 bytes regardless of what it is being computed
Verification time is 10ms
Prover complexity still not quite there in practice

About 60 times faster than previous proposals
Can run some lightweight computations

SNARKs-for-C (BCGTV)
Given a C program, they produce a circuit whose satisfiability encodes
the correctness of execution of the program.

First the C program is compiled into machine code for TinyRAM
Then the TinyRam code is compiled into a circuit

A QSP is built for this circuit
Use the generic concept of Linear Interactive Proof

could plug a more efficient LIP if one is found
Slightly less efficient for the Verifier

Proof size 322 bytes
Verification time dependent on x (from 103ms to 5s for long inputs)

A bit more efficient for the Prover
Were able to handle a Traveling Salesman Decider on a 200-nodes
graph
Still it took almost 3 hours ...



Outline Motivation Verifiable Computation Memory Delegation Conclusion

Implementation Results

Pinocchio (PGHR)
An end-to-end toolchain that compiles a subset of C into QSPs
Proof size is 288 bytes regardless of what it is being computed
Verification time is 10ms
Prover complexity still not quite there in practice

About 60 times faster than previous proposals
Can run some lightweight computations

SNARKs-for-C (BCGTV)
Given a C program, they produce a circuit whose satisfiability encodes
the correctness of execution of the program.

First the C program is compiled into machine code for TinyRAM
Then the TinyRam code is compiled into a circuit

A QSP is built for this circuit
Use the generic concept of Linear Interactive Proof

could plug a more efficient LIP if one is found
Slightly less efficient for the Verifier

Proof size 322 bytes
Verification time dependent on x (from 103ms to 5s for long inputs)

A bit more efficient for the Prover
Were able to handle a Traveling Salesman Decider on a 200-nodes
graph
Still it took almost 3 hours ...



Outline Motivation Verifiable Computation Memory Delegation Conclusion

Implementation Results

Pinocchio (PGHR)
An end-to-end toolchain that compiles a subset of C into QSPs
Proof size is 288 bytes regardless of what it is being computed
Verification time is 10ms
Prover complexity still not quite there in practice

About 60 times faster than previous proposals
Can run some lightweight computations

SNARKs-for-C (BCGTV)
Given a C program, they produce a circuit whose satisfiability encodes
the correctness of execution of the program.

First the C program is compiled into machine code for TinyRAM
Then the TinyRam code is compiled into a circuit

A QSP is built for this circuit
Use the generic concept of Linear Interactive Proof

could plug a more efficient LIP if one is found
Slightly less efficient for the Verifier

Proof size 322 bytes
Verification time dependent on x (from 103ms to 5s for long inputs)

A bit more efficient for the Prover
Were able to handle a Traveling Salesman Decider on a 200-nodes
graph
Still it took almost 3 hours ...



Outline Motivation Verifiable Computation Memory Delegation Conclusion

Implementation Results

Pinocchio (PGHR)
An end-to-end toolchain that compiles a subset of C into QSPs
Proof size is 288 bytes regardless of what it is being computed
Verification time is 10ms
Prover complexity still not quite there in practice

About 60 times faster than previous proposals
Can run some lightweight computations

SNARKs-for-C (BCGTV)
Given a C program, they produce a circuit whose satisfiability encodes
the correctness of execution of the program.

First the C program is compiled into machine code for TinyRAM
Then the TinyRam code is compiled into a circuit

A QSP is built for this circuit
Use the generic concept of Linear Interactive Proof

could plug a more efficient LIP if one is found
Slightly less efficient for the Verifier

Proof size 322 bytes
Verification time dependent on x (from 103ms to 5s for long inputs)

A bit more efficient for the Prover
Were able to handle a Traveling Salesman Decider on a 200-nodes
graph
Still it took almost 3 hours ...



Outline Motivation Verifiable Computation Memory Delegation Conclusion

Implementation Results

Pinocchio (PGHR)
An end-to-end toolchain that compiles a subset of C into QSPs
Proof size is 288 bytes regardless of what it is being computed
Verification time is 10ms
Prover complexity still not quite there in practice

About 60 times faster than previous proposals
Can run some lightweight computations

SNARKs-for-C (BCGTV)
Given a C program, they produce a circuit whose satisfiability encodes
the correctness of execution of the program.

First the C program is compiled into machine code for TinyRAM
Then the TinyRam code is compiled into a circuit

A QSP is built for this circuit
Use the generic concept of Linear Interactive Proof

could plug a more efficient LIP if one is found
Slightly less efficient for the Verifier

Proof size 322 bytes
Verification time dependent on x (from 103ms to 5s for long inputs)

A bit more efficient for the Prover
Were able to handle a Traveling Salesman Decider on a 200-nodes
graph
Still it took almost 3 hours ...



Outline Motivation Verifiable Computation Memory Delegation Conclusion

Implementation Results

Pinocchio (PGHR)
An end-to-end toolchain that compiles a subset of C into QSPs
Proof size is 288 bytes regardless of what it is being computed
Verification time is 10ms
Prover complexity still not quite there in practice

About 60 times faster than previous proposals
Can run some lightweight computations

SNARKs-for-C (BCGTV)
Given a C program, they produce a circuit whose satisfiability encodes
the correctness of execution of the program.

First the C program is compiled into machine code for TinyRAM
Then the TinyRam code is compiled into a circuit

A QSP is built for this circuit
Use the generic concept of Linear Interactive Proof

could plug a more efficient LIP if one is found
Slightly less efficient for the Verifier

Proof size 322 bytes
Verification time dependent on x (from 103ms to 5s for long inputs)

A bit more efficient for the Prover
Were able to handle a Traveling Salesman Decider on a 200-nodes
graph
Still it took almost 3 hours ...



Outline Motivation Verifiable Computation Memory Delegation Conclusion

Outsourcing Your Data

Up to now we have considered the case of a client sending F and x to
the server

Client’s limitation is in computing time
Cannot compute F on its own

What if the client’s limitation is storage?
Client stores large quantity of data D with the server
later queries F on D and receives back F (D)

Previous approaches do not work: they require the client to know the
input



Outline Motivation Verifiable Computation Memory Delegation Conclusion

Outsourcing Your Data

Up to now we have considered the case of a client sending F and x to
the server

Client’s limitation is in computing time
Cannot compute F on its own

What if the client’s limitation is storage?
Client stores large quantity of data D with the server
later queries F on D and receives back F (D)

Previous approaches do not work: they require the client to know the
input



Outline Motivation Verifiable Computation Memory Delegation Conclusion

Outsourcing Your Data

Up to now we have considered the case of a client sending F and x to
the server

Client’s limitation is in computing time
Cannot compute F on its own

What if the client’s limitation is storage?
Client stores large quantity of data D with the server
later queries F on D and receives back F (D)

Previous approaches do not work: they require the client to know the
input



Outline Motivation Verifiable Computation Memory Delegation Conclusion

Homomorphic Message Authenticators (GW)

Client stores D = D1, . . . , Dn and ti = MACk(Di).
Client only stores the short key k

Later the client submits F

Server returns y = F (D) and t
Client accepts if and only if t = MACk(y)
Verification time may be as long as computing F – focus on storage
and bandwidth

Original idea uses homomorphic encryption
Mostly of theoretical interest

New ideas use "traditional" crypto (CF,GN)
Much more efficient
But only work for "shallow" circuits



Outline Motivation Verifiable Computation Memory Delegation Conclusion

Homomorphic Message Authenticators (GW)

Client stores D = D1, . . . , Dn and ti = MACk(Di).
Client only stores the short key k

Later the client submits F

Server returns y = F (D) and t
Client accepts if and only if t = MACk(y)
Verification time may be as long as computing F – focus on storage
and bandwidth

Original idea uses homomorphic encryption
Mostly of theoretical interest

New ideas use "traditional" crypto (CF,GN)
Much more efficient
But only work for "shallow" circuits



Outline Motivation Verifiable Computation Memory Delegation Conclusion

Homomorphic Message Authenticators (GW)

Client stores D = D1, . . . , Dn and ti = MACk(Di).
Client only stores the short key k

Later the client submits F

Server returns y = F (D) and t
Client accepts if and only if t = MACk(y)
Verification time may be as long as computing F – focus on storage
and bandwidth

Original idea uses homomorphic encryption
Mostly of theoretical interest

New ideas use "traditional" crypto (CF,GN)
Much more efficient
But only work for "shallow" circuits



Outline Motivation Verifiable Computation Memory Delegation Conclusion

Homomorphic Message Authenticators (GW)

Client stores D = D1, . . . , Dn and ti = MACk(Di).
Client only stores the short key k

Later the client submits F

Server returns y = F (D) and t
Client accepts if and only if t = MACk(y)
Verification time may be as long as computing F – focus on storage
and bandwidth

Original idea uses homomorphic encryption
Mostly of theoretical interest

New ideas use "traditional" crypto (CF,GN)
Much more efficient
But only work for "shallow" circuits



Outline Motivation Verifiable Computation Memory Delegation Conclusion

Proofs of Retrievability (JK)

Client stores a large file F with the server and wants to make sure
that it can be retrieved without downloading the entire thing (e.g.
auditing)

Client sends a short challenge c
Server responds with a short answer a

avoid reading the entire file to produce the answer

A possible solution (A+,SW)
Encode the file F using an error correcting code F 0

= Encode(F )

Store each block F 0
i with a linearly homomorphic MAC

ti = MACk(F
0
i )

The client queries a small number (`) of the blocks Fi1 . . . Fi` and also
sends ` random coefficients �1, . . . ,�`

The server sends back � = ⌃j�jFij and t = ⌃j�jtj
The client accepts if and only if t = MACk(�)

The scheme is very efficient
Linearly homomorphic MACs can be built from basic universal hash
functions
Minimal storage overhead due to the error-correction expansion
Query complexity is quadratic in the security parameter



Outline Motivation Verifiable Computation Memory Delegation Conclusion

Proofs of Retrievability (JK)

Client stores a large file F with the server and wants to make sure
that it can be retrieved without downloading the entire thing (e.g.
auditing)

Client sends a short challenge c
Server responds with a short answer a

avoid reading the entire file to produce the answer

A possible solution (A+,SW)
Encode the file F using an error correcting code F 0

= Encode(F )

Store each block F 0
i with a linearly homomorphic MAC

ti = MACk(F
0
i )

The client queries a small number (`) of the blocks Fi1 . . . Fi` and also
sends ` random coefficients �1, . . . ,�`

The server sends back � = ⌃j�jFij and t = ⌃j�jtj
The client accepts if and only if t = MACk(�)

The scheme is very efficient
Linearly homomorphic MACs can be built from basic universal hash
functions
Minimal storage overhead due to the error-correction expansion
Query complexity is quadratic in the security parameter



Outline Motivation Verifiable Computation Memory Delegation Conclusion

Proofs of Retrievability (JK)

Client stores a large file F with the server and wants to make sure
that it can be retrieved without downloading the entire thing (e.g.
auditing)

Client sends a short challenge c
Server responds with a short answer a

avoid reading the entire file to produce the answer

A possible solution (A+,SW)
Encode the file F using an error correcting code F 0

= Encode(F )

Store each block F 0
i with a linearly homomorphic MAC

ti = MACk(F
0
i )

The client queries a small number (`) of the blocks Fi1 . . . Fi` and also
sends ` random coefficients �1, . . . ,�`

The server sends back � = ⌃j�jFij and t = ⌃j�jtj
The client accepts if and only if t = MACk(�)

The scheme is very efficient
Linearly homomorphic MACs can be built from basic universal hash
functions
Minimal storage overhead due to the error-correction expansion
Query complexity is quadratic in the security parameter



Outline Motivation Verifiable Computation Memory Delegation Conclusion

Verifiable Keyword Search (BGV)

Client stores a large text file F = w1, . . . , wn with the server
Client sends a keyword w
Server responds with yes/no
how can we efficiently verify the answer?

Encode the file as the polynomial F (X) = ⇧i(X � wi)

Note that F (w) = 0 if and only if w 2 F

Problem reduces to efficiently verifying the computation of a large
degree polynomial.



Outline Motivation Verifiable Computation Memory Delegation Conclusion

Verifiable Keyword Search (BGV)

Client stores a large text file F = w1, . . . , wn with the server
Client sends a keyword w
Server responds with yes/no
how can we efficiently verify the answer?

Encode the file as the polynomial F (X) = ⇧i(X � wi)

Note that F (w) = 0 if and only if w 2 F

Problem reduces to efficiently verifying the computation of a large
degree polynomial.



Outline Motivation Verifiable Computation Memory Delegation Conclusion

Verifiable Keyword Search (BGV)

Client stores a large text file F = w1, . . . , wn with the server
Client sends a keyword w
Server responds with yes/no
how can we efficiently verify the answer?

Encode the file as the polynomial F (X) = ⇧i(X � wi)

Note that F (w) = 0 if and only if w 2 F

Problem reduces to efficiently verifying the computation of a large
degree polynomial.



Outline Motivation Verifiable Computation Memory Delegation Conclusion

Verifiable Computation of Polynomials (BGV)

Other applications besides Verifiable Keyword Search
Client stores a high degree polynomial F (X) = ⌃aiX

i

Client sends a value x
Server responds y = F (x)
how can we efficiently verify the answer?

Store the MAC ti = cai + ri
ri are computed pseudorandomly, i.e. ri = PRFk(i)
Client only stores random secret keys c, k
Let R(X) be the polynomial defined by the ri

When the client queries the value x, the server returns
y = ⌃iaix

i and t = ⌃itix
i

The client checks that t = cy +R(x)
Note that this requires O(d) work where d is the degree of the poly
This can be reduced if we use closed-form efficient PRFs
Knowledge of the key k allows the computation of ⌃irix

i in o(d) time
We know how to build them from Diffie-Hellman type of assumptions



Outline Motivation Verifiable Computation Memory Delegation Conclusion

Verifiable Computation of Polynomials (BGV)

Other applications besides Verifiable Keyword Search
Client stores a high degree polynomial F (X) = ⌃aiX

i

Client sends a value x
Server responds y = F (x)
how can we efficiently verify the answer?

Store the MAC ti = cai + ri
ri are computed pseudorandomly, i.e. ri = PRFk(i)
Client only stores random secret keys c, k
Let R(X) be the polynomial defined by the ri

When the client queries the value x, the server returns
y = ⌃iaix

i and t = ⌃itix
i

The client checks that t = cy +R(x)
Note that this requires O(d) work where d is the degree of the poly
This can be reduced if we use closed-form efficient PRFs
Knowledge of the key k allows the computation of ⌃irix

i in o(d) time
We know how to build them from Diffie-Hellman type of assumptions



Outline Motivation Verifiable Computation Memory Delegation Conclusion

Verifiable Computation of Polynomials (BGV)

Other applications besides Verifiable Keyword Search
Client stores a high degree polynomial F (X) = ⌃aiX

i

Client sends a value x
Server responds y = F (x)
how can we efficiently verify the answer?

Store the MAC ti = cai + ri
ri are computed pseudorandomly, i.e. ri = PRFk(i)
Client only stores random secret keys c, k
Let R(X) be the polynomial defined by the ri

When the client queries the value x, the server returns
y = ⌃iaix

i and t = ⌃itix
i

The client checks that t = cy +R(x)
Note that this requires O(d) work where d is the degree of the poly
This can be reduced if we use closed-form efficient PRFs
Knowledge of the key k allows the computation of ⌃irix

i in o(d) time
We know how to build them from Diffie-Hellman type of assumptions



Outline Motivation Verifiable Computation Memory Delegation Conclusion

Verifiable Computation of Polynomials (BGV)

Other applications besides Verifiable Keyword Search
Client stores a high degree polynomial F (X) = ⌃aiX

i

Client sends a value x
Server responds y = F (x)
how can we efficiently verify the answer?

Store the MAC ti = cai + ri
ri are computed pseudorandomly, i.e. ri = PRFk(i)
Client only stores random secret keys c, k
Let R(X) be the polynomial defined by the ri

When the client queries the value x, the server returns
y = ⌃iaix

i and t = ⌃itix
i

The client checks that t = cy +R(x)
Note that this requires O(d) work where d is the degree of the poly
This can be reduced if we use closed-form efficient PRFs
Knowledge of the key k allows the computation of ⌃irix

i in o(d) time
We know how to build them from Diffie-Hellman type of assumptions



Outline Motivation Verifiable Computation Memory Delegation Conclusion

Verifiable Computation of Polynomials (BGV)

Other applications besides Verifiable Keyword Search
Client stores a high degree polynomial F (X) = ⌃aiX

i

Client sends a value x
Server responds y = F (x)
how can we efficiently verify the answer?

Store the MAC ti = cai + ri
ri are computed pseudorandomly, i.e. ri = PRFk(i)
Client only stores random secret keys c, k
Let R(X) be the polynomial defined by the ri

When the client queries the value x, the server returns
y = ⌃iaix

i and t = ⌃itix
i

The client checks that t = cy +R(x)
Note that this requires O(d) work where d is the degree of the poly
This can be reduced if we use closed-form efficient PRFs
Knowledge of the key k allows the computation of ⌃irix

i in o(d) time
We know how to build them from Diffie-Hellman type of assumptions



Outline Motivation Verifiable Computation Memory Delegation Conclusion

Dynamic Storage

A very important problem is how to deal with updates on the memory
without changing the secret state of the client, the server can always
ignore updates
challenge: updates that do not require the client to re-authenticate
large part of the server storage

Merkle-trees allow to check individual memory locations which change
over time

but not "global" verifications (proof of retrievability, verifiable keyword
search)

Some progress on dynamic proofs of retrievability (CW,SSP)



Outline Motivation Verifiable Computation Memory Delegation Conclusion

Dynamic Storage

A very important problem is how to deal with updates on the memory
without changing the secret state of the client, the server can always
ignore updates
challenge: updates that do not require the client to re-authenticate
large part of the server storage

Merkle-trees allow to check individual memory locations which change
over time

but not "global" verifications (proof of retrievability, verifiable keyword
search)

Some progress on dynamic proofs of retrievability (CW,SSP)



Outline Motivation Verifiable Computation Memory Delegation Conclusion

Dynamic Storage

A very important problem is how to deal with updates on the memory
without changing the secret state of the client, the server can always
ignore updates
challenge: updates that do not require the client to re-authenticate
large part of the server storage

Merkle-trees allow to check individual memory locations which change
over time

but not "global" verifications (proof of retrievability, verifiable keyword
search)

Some progress on dynamic proofs of retrievability (CW,SSP)



Outline Motivation Verifiable Computation Memory Delegation Conclusion

Future Directions

Multiple clients
Protect information from the other clients
Becomes secure multiparty computation with an added constraint

only one party has enough resources to compute the desired

functionality

Leverage successes in SMC.
General VC: Explore more realistic models of computation

e.g. RAM
Explore more pragmatic approaches

Weaker security guarantee that rules out most likely forms of attacks
e.g. program checking against bugs in the implementation

Does the outsourcing of polynomials have larger applicability?
Alternatively, can we use the same idea of "closed form efficient" PRFs
for other computations

A more efficient general result for memory outsourcing/homomorphic
MACs
"Important" Computations, which would benefit from being
outsourced:

Image processing
crypto operations



Outline Motivation Verifiable Computation Memory Delegation Conclusion

Future Directions

Multiple clients
Protect information from the other clients
Becomes secure multiparty computation with an added constraint

only one party has enough resources to compute the desired

functionality

Leverage successes in SMC.
General VC: Explore more realistic models of computation

e.g. RAM
Explore more pragmatic approaches

Weaker security guarantee that rules out most likely forms of attacks
e.g. program checking against bugs in the implementation

Does the outsourcing of polynomials have larger applicability?
Alternatively, can we use the same idea of "closed form efficient" PRFs
for other computations

A more efficient general result for memory outsourcing/homomorphic
MACs
"Important" Computations, which would benefit from being
outsourced:

Image processing
crypto operations



Outline Motivation Verifiable Computation Memory Delegation Conclusion

Future Directions

Multiple clients
Protect information from the other clients
Becomes secure multiparty computation with an added constraint

only one party has enough resources to compute the desired

functionality

Leverage successes in SMC.
General VC: Explore more realistic models of computation

e.g. RAM
Explore more pragmatic approaches

Weaker security guarantee that rules out most likely forms of attacks
e.g. program checking against bugs in the implementation

Does the outsourcing of polynomials have larger applicability?
Alternatively, can we use the same idea of "closed form efficient" PRFs
for other computations

A more efficient general result for memory outsourcing/homomorphic
MACs
"Important" Computations, which would benefit from being
outsourced:

Image processing
crypto operations



Outline Motivation Verifiable Computation Memory Delegation Conclusion

Future Directions

Multiple clients
Protect information from the other clients
Becomes secure multiparty computation with an added constraint

only one party has enough resources to compute the desired

functionality

Leverage successes in SMC.
General VC: Explore more realistic models of computation

e.g. RAM
Explore more pragmatic approaches

Weaker security guarantee that rules out most likely forms of attacks
e.g. program checking against bugs in the implementation

Does the outsourcing of polynomials have larger applicability?
Alternatively, can we use the same idea of "closed form efficient" PRFs
for other computations

A more efficient general result for memory outsourcing/homomorphic
MACs
"Important" Computations, which would benefit from being
outsourced:

Image processing
crypto operations



Outline Motivation Verifiable Computation Memory Delegation Conclusion

Future Directions

Multiple clients
Protect information from the other clients
Becomes secure multiparty computation with an added constraint

only one party has enough resources to compute the desired

functionality

Leverage successes in SMC.
General VC: Explore more realistic models of computation

e.g. RAM
Explore more pragmatic approaches

Weaker security guarantee that rules out most likely forms of attacks
e.g. program checking against bugs in the implementation

Does the outsourcing of polynomials have larger applicability?
Alternatively, can we use the same idea of "closed form efficient" PRFs
for other computations

A more efficient general result for memory outsourcing/homomorphic
MACs
"Important" Computations, which would benefit from being
outsourced:

Image processing
crypto operations



Outline Motivation Verifiable Computation Memory Delegation Conclusion

Future Directions

Multiple clients
Protect information from the other clients
Becomes secure multiparty computation with an added constraint

only one party has enough resources to compute the desired

functionality

Leverage successes in SMC.
General VC: Explore more realistic models of computation

e.g. RAM
Explore more pragmatic approaches

Weaker security guarantee that rules out most likely forms of attacks
e.g. program checking against bugs in the implementation

Does the outsourcing of polynomials have larger applicability?
Alternatively, can we use the same idea of "closed form efficient" PRFs
for other computations

A more efficient general result for memory outsourcing/homomorphic
MACs
"Important" Computations, which would benefit from being
outsourced:

Image processing
crypto operations


	Outline
	Motivation
	Verifiable Computation
	Memory Delegation
	Conclusion

