A Survey of Verifiable Delegation of Computations

Rosario Gennaro

The City College of New York rosario@cs.ccny.cuny.edu

September 12, 2013

Outline •	Motivation	Verifiable Computation	Memory Delegation	Conclusion O
Talk Our	tline			

Motivation

Cloud computing, Small Devices, Large Scale Computation

Generic Results for Verifiable Computation

Protocols that work for arbitrary computations

- Interactive Proofs
- Probabilistically Checkable Proofs
- "Muggles" Proofs
- Other Arithmetizations approaches (QSP)
- Implementations (Pinocchio, Snark-for-C)

Delegation of Memory

- Homomorphic MACs
- Proofs of Retrievability
- Verifiable Keyword Search

Outline •	Motivation 000	Verifiable Computation	Memory Delegation	Conclusion 0
Talk O	utling			

Motivation

Cloud computing, Small Devices, Large Scale Computation

Generic Results for Verifiable Computation

Protocols that work for arbitrary computations

- Interactive Proofs
- Probabilistically Checkable Proofs
- "Muggles" Proofs
- Other Arithmetizations approaches (QSP)
- Implementations (Pinocchio, Snark-for-C)

Delegation of Memory

- Homomorphic MACs
- Proofs of Retrievability
- Verifiable Keyword Search

Outline •	Motivation 000	Verifiable Computation	Memory Delegation	Conclusion 0
Talk O	utling			

Motivation

Cloud computing, Small Devices, Large Scale Computation

Generic Results for Verifiable Computation

Protocols that work for arbitrary computations

- Interactive Proofs
- Probabilistically Checkable Proofs
- "Muggles" Proofs
- Other Arithmetizations approaches (QSP)
- Implementations (Pinocchio, Snark-for-C)

Delegation of Memory

- Homomorphic MACs
- Proofs of Retrievability
- Verifiable Keyword Search

Outline 0	Motivation ●00	Verifiable Computation	Memory Delegation	Conclusion 0
Computin	g on Demand	1		

Cloud Computing

Businesses buy computing power from a service provider

Advantages

- No need to provision and maintain hardware
- Pay for what you need
- Easily and quickly scalable up or down

Trust Issues

- Transfer possibly confidential data to computing service provider
- Trust computation is performed correctly without errors
- Malicious or benign

Outline 0	Motivation ●00	Verifiable Computation	Memory Delegation	Conclusion 0
Computir	ng on Deman	d		

Cloud Computing

Businesses buy computing power from a service provider

Advantages

- No need to provision and maintain hardware
- Pay for what you need
- Easily and quickly scalable up or down

Trust Issues

- Transfer possibly confidential data to computing service provider
- Trust computation is performed correctly without errors
- Malicious or benign

Outline 0	Motivation ●00	Verifiable Computation	Memory Delegation	Conclusion O
Computi	ng on Demar	nd		

Cloud Computing

Businesses buy computing power from a service provider

Advantages

- No need to provision and maintain hardware
- Pay for what you need
- Easily and quickly scalable up or down

Trust Issues

- Transfer possibly confidential data to computing service provider
- Trust computation is performed correctly without errors
- Malicious or benign

Outline	Motivation	Verifiable Computation	Memory Delegation	Conclusion
	000			0
Small E	Devices			

- Small devices outsourcing complex computing problems to larger servers
 - Photo manipulations
 - Cryptographic operations
- Same issues:
 - Confidentiality of data
 - Correctness of result

Outline	Motivation	Verifiable Computation	Memory Delegation	Conclusion
	000			0
Small E	Devices			

- Small devices outsourcing complex computing problems to larger servers
 - Photo manipulations
 - Cryptographic operations
- Same issues:
 - Confidentiality of data
 - Correctness of result

Outline	Motivation	Verifiable Computation	Memory Delegation	Conclusion
	000			0
Large S	Scale Comput	ations		

- Network-based computations
 - SETI@Home
 - Folding@Home
- Users donate idle cycles
 - Known problem: users return fake results without performing the computation
 - Increases their ranking
- Needed a way to efficiently weed out bad results
 - Currently use redundancy

Outline	Motivation	Verifiable Computation	Memory Delegation	Conclusion
	000			0
Large S	Scale Computa	ations		

- Network-based computations
 - SETI@Home
 - Folding@Home
- Users donate idle cycles
 - Known problem: users return fake results without performing the computation
 - Increases their ranking
- Needed a way to efficiently weed out bad results
 Currently use redundancy

Outline	Motivation	Verifiable Computation	Memory Delegation	Conclusion
	000			0
Large S	Scale Computa	ations		

- Network-based computations
 - SETI@Home
 - Folding@Home
- Users donate idle cycles
 - Known problem: users return fake results without performing the computation
 - Increases their ranking
- Needed a way to efficiently weed out bad results
 - Currently use redundancy

Outline	Motivation	Verifiable Computation	Memory Delegation	Conclusion
0	000	•00000000		o
Verifiabl	e Computati	ion		

- \blacksquare The client sends a function F and an input x to the server
- The server returns y = F(x) and a proof Π that y is correct. Verifying Π should take less time than computing F.

Outline 0	Motivation 000	Verifiable Computation •••••••••	Memory Delegation	Conclusion 0
Verifiable	Computati	on		

- \blacksquare The client sends a function F and an input x to the server
- The server returns y = F(x) and a proof Π that y is correct. Verifying Π should take less time than computing F.

Outline 0	Motivation 000	Verifiable Computation	Memory Delegation	Conclusion O
Interactive	e Proofs (GN	1R,B)		

- An all powerful Prover interacts with a poly-time Verifier
 - Prover convinces Verifier of a statement she cannot decide on her own
 - Probabilist guarantee
 - All of PSPACE can be proven this way [LFKN,S]
- We want something different
 - A scaled back version of this protocols for efficient computations
 - A powerful but still efficient prover: its complexity should be as close as possible to the original computation
 - A super-efficient Verifier: ideally linear time

Outline 0	Motivation 000	Verifiable Computation	Memory Delegation	Conclusion 0
Interactive	e Proofs (G	GMR,B)		

- An all powerful Prover interacts with a poly-time Verifier
 - Prover convinces Verifier of a statement she cannot decide on her own
 - Probabilist guarantee
 - All of PSPACE can be proven this way [LFKN,S]
- We want something different
 - A scaled back version of this protocols for efficient computations
 - A powerful but still efficient prover: its complexity should be as close as possible to the original computation
 - A super-efficient Verifier: ideally linear time

Outline	Motivation	Verifiable Computation	Memory Delegation	Conclusion
0	000	00●000000		O
Muggles F	Proofs (GKR)			

Poly-time Prover interacts with a quasi-linear Verifier

Refines the proof that IP=PSPACE to efficient computations

 \blacksquare For a log-space uniform NC circuit of depth d

- Prover runs in poly(n)
- Verifier runs in O(n + poly(d))
- Interactive $(O(d \cdot \log n) \text{ rounds})$
- Unconditional Soundness

Outline 0	Motivation 000	Verifiable Computation	Memory Delegation	Conclusion O
Muggles F	Proofs (GKR)			

- Poly-time Prover interacts with a quasi-linear Verifier
 - Refines the proof that IP=PSPACE to efficient computations

\blacksquare For a log-space uniform NC circuit of depth d

- Prover runs in poly(n)
- Verifier runs in O(n + poly(d))
- Interactive ($O(d \cdot \log n)$ rounds)
- Unconditional Soundness

Outline 0	Motivation 000	Verifiable Computation	Memory Delegation	Conclusion 0
Optimiza	ations and Ir	nplementations (CN	ЛТ,Т)	

\blacksquare Prover can be implemented in $O(S\log S)$

- $\hfill\blacksquare$ Where S is the size of the circuit computing the function
- $\hfill O(S)$ for circuits with a regular wiring pattern
- Implementation tests show that for the regular wiring pattern case the prover is less than 10x slower than simply computing the function.

Protocol remains highly interactive

Interaction can be removed via the Fiat-Shamir heuristic (random oracle model).

- \blacksquare Prover can be implemented in $O(S \log S)$
 - $\hfill\blacksquare$ Where S is the size of the circuit computing the function
 - $\hfill O(S)$ for circuits with a regular wiring pattern
- Implementation tests show that for the regular wiring pattern case the prover is less than 10x slower than simply computing the function.
- Protocol remains highly interactive
 - Interaction can be removed via the Fiat-Shamir heuristic (random oracle model).

- \blacksquare Prover can be implemented in $O(S \log S)$
 - $\hfill\blacksquare$ Where S is the size of the circuit computing the function
 - $\hfill O(S)$ for circuits with a regular wiring pattern
- Implementation tests show that for the regular wiring pattern case the prover is less than 10x slower than simply computing the function.
- Protocol remains highly interactive
 - Interaction can be removed via the Fiat-Shamir heuristic (random oracle model).

Outline	Motivation	Verifiable Computation	Memory Delegation	Conclusion
0	000	0000●0000		0
Probabilist	cically Checka	able Proofs		

- The IP=PSPACE result yielded a surprising consequence: any computation can be associated with a (very long) proof which can be queried in only a constant number of locations (...AMLSS, AS, ...)
- The Prover commits to this proof using a Merkle tree and then the Verifier queries it and verifies the openings (K)
 - Note that now we have an *argument* with a computational soundness guarantee
- This protocol can also be made non-interactive using the random oracle (M) or strong extractability assumptions about the hash function used in the protocol (DL,BCCT,GLR)
- Main bottleneck: still the Prover's complexity $O(S^{1.5})$

Outline 0	Motivation 000	Verifiable Computation	Memory Delegation	Conclusion 0
Probabilist	ically Checka	ble Proofs		

- The IP=PSPACE result yielded a surprising consequence: any computation can be associated with a (very long) proof which can be queried in only a constant number of locations (...AMLSS, AS, ...)
- The Prover commits to this proof using a Merkle tree and then the Verifier queries it and verifies the openings (K)
 - Note that now we have an *argument* with a computational soundness guarantee
- This protocol can also be made non-interactive using the random oracle (M) or strong extractability assumptions about the hash function used in the protocol (DL,BCCT,GLR)
- Main bottleneck: still the Prover's complexity ${\cal O}(S^{1.5})$

Outline 0	Motivation 000	Verifiable Computation	Memory Delegation	Conclusion 0
Probabilist	ically Checka	ble Proofs		

- The IP=PSPACE result yielded a surprising consequence: any computation can be associated with a (very long) proof which can be queried in only a constant number of locations (...AMLSS, AS, ...)
- The Prover commits to this proof using a Merkle tree and then the Verifier queries it and verifies the openings (K)
 - Note that now we have an *argument* with a computational soundness guarantee
- This protocol can also be made non-interactive using the random oracle (M) or strong extractability assumptions about the hash function used in the protocol (DL,BCCT,GLR)

• Main bottleneck: still the Prover's complexity $O(S^{1.5})$

Outline 0	Motivation 000	Verifiable Computation	Memory Delegation	Conclusion 0
Probabilist	ically Checka	able Proofs		

- The IP=PSPACE result yielded a surprising consequence: any computation can be associated with a (very long) proof which can be queried in only a constant number of locations (...AMLSS, AS, ...)
- The Prover commits to this proof using a Merkle tree and then the Verifier queries it and verifies the openings (K)
 - Note that now we have an *argument* with a computational soundness guarantee
- This protocol can also be made non-interactive using the random oracle (M) or strong extractability assumptions about the hash function used in the protocol (DL,BCCT,GLR)
- Main bottleneck: still the Prover's complexity $O(S^{1.5})$

Outline 0	Motivation 000	Verifiable Computation	Memory Delegation	Conclusion O
Arithme	etization			

- Turn a circuit computation into a set of polynomial equations
 - Replace each gate with a quadratic polynomial
 - Check these polynomial identities in a randomized fashion by checking them on random points
 - Use error-correcting encodings to make sure that the proof is *locally* checkable (i.e. to reduce the number of random queries to the proof)

Can we use different arithmetizations?

- Avoid composing long PCP proofs with compressing hash functions for a more direct way to get short proofs
- Linear Prover complexity?
- Groth showed a different approach
 - Polynomial equations are verified in the exponent (using bilinear maps over a cyclic group)
 - A Diffie-Hellman type of assumption prevents the Prover from cheating
 - Proof is very compact without using Merkle trees
 - Drawback: quadratic prover complexity and a quadratic CRS
 - Lipmaa shows how to reduce those to quasilinear

Outline 0	Motivation 000	Verifiable Computation	Memory Delegation	Conclusion O
Arithme	etization			

- Turn a circuit computation into a set of polynomial equations
 - Replace each gate with a quadratic polynomial
 - Check these polynomial identities in a randomized fashion by checking them on random points
 - Use error-correcting encodings to make sure that the proof is *locally* checkable (i.e. to reduce the number of random queries to the proof)
- Can we use different arithmetizations?
 - Avoid composing long PCP proofs with compressing hash functions for a more direct way to get short proofs
 - Linear Prover complexity?
- Groth showed a different approach
 - Polynomial equations are verified in the exponent (using bilinear maps over a cyclic group)
 - A Diffie-Hellman type of assumption prevents the Prover from cheating
 - Proof is very compact without using Merkle trees
 - Drawback: quadratic prover complexity and a quadratic CRS
 - Lipmaa shows how to reduce those to quasilinear

Outline 0	Motivation 000	Verifiable Computation	Memory Delegation	Conclusion O
Arithme	etization			

- Turn a circuit computation into a set of polynomial equations
 - Replace each gate with a quadratic polynomial
 - Check these polynomial identities in a randomized fashion by checking them on random points
 - Use error-correcting encodings to make sure that the proof is *locally* checkable (i.e. to reduce the number of random queries to the proof)
- Can we use different arithmetizations?
 - Avoid composing long PCP proofs with compressing hash functions for a more direct way to get short proofs
 - Linear Prover complexity?
- Groth showed a different approach
 - Polynomial equations are verified in the exponent (using bilinear maps over a cyclic group)
 - A Diffie-Hellman type of assumption prevents the Prover from cheating
 - Proof is very compact without using Merkle trees
 - Drawback: quadratic prover complexity and a quadratic CRS
 - Lipmaa shows how to reduce those to quasilinear

Outline	Motivation	Verifiable Computation	Memory Delegation	Conclusion
0	000	000000€00		O
Quadrati	c Span Prog	grams (GGPR)		

- To check that all the wires in the circuits are correct it just requires a linear test (*span program*)
- This would be too much work for the verifier (same as the size of the circuit)
- Build two copies of the "checking" span program and test them against each other
- = A QSP is defined by two sets of polynomials $V = \{v_1, ..., v_{n+m}\}$, $W = \{v_1, ..., v_{n+m}\}$ and a target polynomial t
 - We say that a QSP (V,W,t) computes a Boolean function *P* of *n* inputs if and only if
 - For all $x = (x_1 \dots x_n)$ s.t. F(x) = 1
 - π it divides the product of a linear combination of subsets of V and W
 - $= t \left(\Sigma_{i=1}^{n} a_i v_i \right) \cdot \left(\Sigma_{i=1}^{n} b_i v_i \right)$
 - where $a_i = b_i = 0$ iff $x_i = 0$

Outline 0	Motivation 000	Verifiable Computation	Memory Delegation	Conclusion O
Quadra	tic Span Prog	grams (GGPR)		

- To check that all the wires in the circuits are correct it just requires a linear test (*span program*)
- This would be too much work for the verifier (same as the size of the circuit)
- Build two copies of the "checking" span program and test them against each other
- A QSP is defined by two sets of polynomials $V = \{v_1, ..., v_{n+m}\}$, $W = \{w_1, ..., w_{n+m}\}$ and a target polynomial t
 - We say that a QSP (V, W, t) computes a Boolean function F of n inputs if and only if
 - For all $x = (x_1 \dots x_n)$ s.t. F(x) = 1
 - t divides the product of a linear combination of subsets of V and W
 - $\bullet t | (\Sigma_{i=1}^n a_i v_i) \cdot (\Sigma_{i=1}^n b_i w_i)$
 - where $a_i = b_i = 0$ iff $x_i = 0$

Outline 0	Motivation 000	Verifiable Computation	Memory Delegation	Conclusion O
Quadra	tic Span Prog	grams (GGPR)		

- To check that all the wires in the circuits are correct it just requires a linear test (*span program*)
- This would be too much work for the verifier (same as the size of the circuit)
- Build two copies of the "checking" span program and test them against each other
- A QSP is defined by two sets of polynomials $V = \{v_1, .., v_{n+m}\}$, $W = \{w_1, .., w_{n+m}\}$ and a target polynomial t
 - We say that a QSP (V, W, t) computes a Boolean function F of n inputs if and only if
 - For all $x = (x_1 \dots x_n)$ s.t. F(x) = 1
 - t divides the product of a linear combination of subsets of V and W
 - $\bullet t | (\Sigma_{i=1}^n a_i v_i) \cdot (\Sigma_{i=1}^n b_i w_i)$
 - where $a_i = b_i = 0$ iff $x_i = 0$

Outline 0	Motivation 000	Verifiable Computation	Memory Delegation	Conclusion 0
Quadra	tic Span Prog	grams (GGPR)		

- To check that all the wires in the circuits are correct it just requires a linear test (*span program*)
- This would be too much work for the verifier (same as the size of the circuit)

 Build two copies of the "checking" span program and test them against each other

- A QSP is defined by two sets of polynomials $V = \{v_1, .., v_{n+m}\}$, $W = \{w_1, .., w_{n+m}\}$ and a target polynomial t
 - \blacksquare We say that a QSP (V,W,t) computes a Boolean function F of n inputs if and only if
 - For all $x = (x_1 \dots x_n)$ s.t. F(x) = 1
 - t divides the product of a linear combination of subsets of V and W

$$\bullet t|(\Sigma_{i=1}^n a_i v_i) \cdot (\Sigma_{i=1}^n b_i w_i)$$

• where $a_i = b_i = 0$ iff $x_i = 0$

Outline 0	Motivation 000	Verifiable Computation	Memory Delegation	Conclusion O
Quadra	tic Span Prog	grams (GGPR)		

- To check that all the wires in the circuits are correct it just requires a linear test (*span program*)
- This would be too much work for the verifier (same as the size of the circuit)
- Build two copies of the "checking" span program and test them against each other
- A QSP is defined by two sets of polynomials $V = \{v_1, .., v_{n+m}\}$, $W = \{w_1, .., w_{n+m}\}$ and a target polynomial t
 - \blacksquare We say that a QSP (V,W,t) computes a Boolean function F of n inputs if and only if
 - For all $x = (x_1 \dots x_n)$ s.t. F(x) = 1
 - t divides the product of a linear combination of subsets of V and W
 - $\bullet t | (\Sigma_{i=1}^n a_i v_i) \cdot (\Sigma_{i=1}^n b_i w_i)$
 - where $a_i = b_i = 0$ iff $x_i = 0$

Outline 0	Motivation 000	Verifiable Computation	Memory Delegation	Conclusion 0
The QSP	protocol			

In a preprocessing stage the Verifier publishes the values $g^{s^i},\,g^{v_i(s)},\,g^{w_i(s)}$ and $g^{t(s)}$

• for a secret random value s.

 \blacksquare On input x the server finds the coefficients $a_i,\,b_i$ and polynomial h such that

 $\bullet t \cdot h = (\sum_{i=1}^{n} a_i v_i) \cdot (\sum_{i=1}^{n} b_i w_i)$

Using the values produced by the Verifier the Prover can evaluate in the exponent the above equation at the point s

Verifier checks the equation using bilinear maps

- Efficiency:
 - The verifier is linear to prepare the input; constant time to verify the result
 - Prover is quasi-linear the polylog overhead comes from doing polynomial division to compute h
- Security: requires a Diffie-Hellman type of assumption which assumes that the prover cannot divide in the exponent.

Outline	Motivation	Verifiable Computation	Memory Delegation	Conclusion
0	000	0000000●0		0
The QSP	protocol			

- In a preprocessing stage the Verifier publishes the values $g^{s^i},\,g^{v_i(s)},\,g^{w_i(s)}$ and $g^{t(s)}$
 - for a secret random value s.
- \blacksquare On input x the server finds the coefficients $a_i, \, b_i$ and polynomial h such that

• $t \cdot h = (\Sigma_{i=1}^n a_i v_i) \cdot (\Sigma_{i=1}^n b_i w_i)$

Using the values produced by the Verifier the Prover can evaluate in the exponent the above equation at the point s

Verifier checks the equation using bilinear maps

- Efficiency:
 - The verifier is linear to prepare the input; constant time to verify the result
 - Prover is *quasi-linear* the polylog overhead comes from doing polynomial division to compute h
- Security: requires a Diffie-Hellman type of assumption which assumes that the prover cannot divide in the exponent.

Outline	Motivation	Verifiable Computation	Memory Delegation	Conclusion
0	000	0000000●0		0
The QSI	P protocol			

- In a preprocessing stage the Verifier publishes the values $g^{s^i},\,g^{v_i(s)},\,g^{w_i(s)}$ and $g^{t(s)}$
 - for a secret random value s.
- \blacksquare On input x the server finds the coefficients $a_i, \, b_i$ and polynomial h such that

• $t \cdot h = (\sum_{i=1}^{n} a_i v_i) \cdot (\sum_{i=1}^{n} b_i w_i)$

 Using the values produced by the Verifier the Prover can evaluate in the exponent the above equation at the point s

Verifier checks the equation using bilinear maps

Efficiency:

- The verifier is linear to prepare the input; constant time to verify the result
- Prover is *quasi-linear* the polylog overhead comes from doing polynomial division to compute h
- Security: requires a Diffie-Hellman type of assumption which assumes that the prover cannot divide in the exponent.

Outline 0	Motivation 000	Verifiable Computation	Memory Delegation	Conclusion 0
The QS	P protocol			

- In a preprocessing stage the Verifier publishes the values $g^{s^i},\,g^{v_i(s)},\,g^{w_i(s)}$ and $g^{t(s)}$
 - for a secret random value s.
- \blacksquare On input x the server finds the coefficients $a_i, \, b_i$ and polynomial h such that

• $t \cdot h = (\sum_{i=1}^{n} a_i v_i) \cdot (\sum_{i=1}^{n} b_i w_i)$

 Using the values produced by the Verifier the Prover can evaluate in the exponent the above equation at the point s

Verifier checks the equation using bilinear maps

Efficiency:

- The verifier is linear to prepare the input; constant time to verify the result
- Prover is *quasi-linear* the polylog overhead comes from doing polynomial division to compute h

• Security: requires a Diffie-Hellman type of assumption which assumes that the prover cannot divide in the exponent.

Outline 0	Motivation 000	Verifiable Computation	Memory Delegation	Conclusion 0
The QS	P protocol			

- In a preprocessing stage the Verifier publishes the values $g^{s^i},\,g^{v_i(s)},\,g^{w_i(s)}$ and $g^{t(s)}$
 - for a secret random value s.
- \blacksquare On input x the server finds the coefficients $a_i, \, b_i$ and polynomial h such that

• $t \cdot h = (\sum_{i=1}^{n} a_i v_i) \cdot (\sum_{i=1}^{n} b_i w_i)$

 Using the values produced by the Verifier the Prover can evaluate in the exponent the above equation at the point s

Verifier checks the equation using bilinear maps

Efficiency:

- The verifier is linear to prepare the input; constant time to verify the result
- Prover is *quasi-linear* the polylog overhead comes from doing polynomial division to compute h
- Security: requires a Diffie-Hellman type of assumption which assumes that the prover cannot divide in the exponent.

Outline 0	Motivation 000	Verifiable Computation	Memory Delegation	Conclusion 0
Implement	ation Results	;		

An end-to-end toolchain that compiles a subset of C into QSPs

- Proof size is 288 bytes regardless of what it is being computed
- Verification time is 10ms
- Prover complexity still not quite there in practice
 - About 60 times faster than previous proposals
 - Can run some lightweight computations

SNARKs-for-C (BCGTV)

Given a C program, they produce a circuit whose satisfiability encodesses the correctness of execution of the program.

First the C program is compiled into machine code for TinyRAM

Then the TimyRam code is compiled into a circuit

A QSP is built for this circuit.

Use the generic concept of Linear Interactive Proof.

could plug a more efficient LIP if one is found

Slightly less efficient for the Verifier

Proof size 322 bytes

Verification time dependent on *x* (from 103ms to 5s for long inputs) A bit more efficient for the Prover

Were able to handle a Traveling Salesman Decider on a 200-nodes

Outline	Motivation	Verifiable Computation	Memory Delegation	Conclusion
0	000	00000000●		O
Impleme	entation Resu	ılts		

An end-to-end toolchain that compiles a subset of C into QSPs

- Proof size is 288 bytes regardless of what it is being computed
- Verification time is 10ms
- Prover complexity still not quite there in practice
 - About 60 times faster than previous proposals
 - Can run some lightweight computations

SNARKs-for-C (BCGTV)

Given a C program, they produce a circuit whose satisfiability encodes the correctness of execution of the program.

First the C program is compiled into machine code for TinyRAM

Then the TimyRam code is compiled into a circuit

A QSP is built for this circuit.

Use the generic concept of Linear Interactive Proof.

could plug a more efficient LIP if one is found

Slightly less efficient for the Verifier

Proof size 322 bytes

Verification time dependent on *x* (from 103ms to 5s for long inputs) A bit more efficient for the Prover

Were able to handle a Traveling Salesman Decider on a 200-nodes

Outline 0	Motivation 000	Verifiable Computation	Memory Delegation	Conclusion 0		
Impleme	Implementation Results					

- An end-to-end toolchain that compiles a subset of C into QSPs
- Proof size is 288 bytes regardless of what it is being computed

Verification time is 10ms

- Prover complexity still not quite there in practice
 - About 60 times faster than previous proposals
 - Can run some lightweight computations

- Given a C program, they produce a circuit whose satisfiability encodes the correctness of execution of the program.
 - First the C program is compiled into machine code for TinyRAM.
 - Then the TimyRam code is compiled into a circuit
 - A QSP is built for this circuit.
 - Use the generic concept of Linear Interactive Proof
 - sould plug a more efficient LIP if one is found
 - Slightly less efficient for the Verifier
 - Proof size 322 bytes
 - Verification time dependent on a (from 108ms to 5s for long inputs) A bit more efficient for the Prover
 - Were able to handle a Traveling Salesman Decider on a 200-nodes

Outline 0	Motivation 000	Verifiable Computation	Memory Delegation	Conclusion ○
Implement	ation Results	;		

- An end-to-end toolchain that compiles a subset of C into QSPs
- Proof size is 288 bytes regardless of what it is being computed
- Verification time is 10ms
- Prover complexity still not quite there in practice
 - About 60 times faster than previous proposals
 - Can run some lightweight computations

SNARKs-for-C (BCGTV)

 Given a C program, they produce a circuit whose satisfiability encodes the correctness of execution of the program.

- First the C program is compiled into machine code for TinyRAM
- Then the TinyRam code is compiled into a circuit
- A QSP is built for this circuit
 - . Use the generic concept of Linear Interactive Proof
 - could plug a more efficient LIP if one is found
 - Slightly less efficient for the Verifier
 - Proof size 322 bytes
 - Verification time dependent on *x* (from 108ms to 5s for long inputs) A bit more efficient for the Prover
 - Were able to handle a Traveling Salesman Decider on a 200-nodes

Outline 0	Motivation 000	Verifiable Computation	Memory Delegation	Conclusion 0
Implement	ation Results	5		

- An end-to-end toolchain that compiles a subset of C into QSPs
- Proof size is 288 bytes regardless of what it is being computed
- Verification time is 10ms
- Prover complexity still not quite there in practice
 - About 60 times faster than previous proposals
 - Can run some lightweight computations

- Given a C program, they produce a circuit whose satisfiability encodes the correctness of execution of the program.
 - First the C program is compiled into machine code for TinyRAM
 - Then the TinyRam code is compiled into a circuit
- A QSP is built for this circuit
 - Use the generic concept of *Linear Interactive Proof*
 - could plug a more efficient LIP if one is found
- Slightly less efficient for the Verifier
 - Proof size 322 bytes
- Verification time dependent on x (from 103ms to 5s for long inputs) A bit more efficient for the Prover
 - Were able to handle a Traveling Salesman Decider on a 200-nodes

Outline 0	Motivation 000	Verifiable Computation	Memory Delegation	Conclusion ○
Implement	ation Results	;		

- An end-to-end toolchain that compiles a subset of C into QSPs
- Proof size is 288 bytes regardless of what it is being computed
- Verification time is 10ms
- Prover complexity still not quite there in practice
 - About 60 times faster than previous proposals
 - Can run some lightweight computations

- Given a C program, they produce a circuit whose satisfiability encodes the correctness of execution of the program.
 - First the C program is compiled into machine code for TinyRAM
 - Then the TinyRam code is compiled into a circuit
- A QSP is built for this circuit
 - Use the generic concept of Linear Interactive Proof
 - could plug a more efficient LIP if one is found
- Slightly less efficient for the Verifier
 - Proof size 322 bytes
 - Verification time dependent on x (from 103ms to 5s for long inputs)
- A bit more efficient for the Prover
 - Were able to handle a Traveling Salesman Decider on a 200-nodes

Outline 0	Motivation 000	Verifiable Computation	Memory Delegation	Conclusion ○
Implement	ation Results	;		

- An end-to-end toolchain that compiles a subset of C into QSPs
- Proof size is 288 bytes regardless of what it is being computed
- Verification time is 10ms
- Prover complexity still not quite there in practice
 - About 60 times faster than previous proposals
 - Can run some lightweight computations

- Given a C program, they produce a circuit whose satisfiability encodes the correctness of execution of the program.
 - First the C program is compiled into machine code for TinyRAM
 - Then the TinyRam code is compiled into a circuit
- A QSP is built for this circuit
 - Use the generic concept of Linear Interactive Proof
 - could plug a more efficient LIP if one is found
- Slightly less efficient for the Verifier
 - Proof size 322 bytes
 - Verification time dependent on x (from 103ms to 5s for long inputs)
- A bit more efficient for the Prover
 - Were able to handle a Traveling Salesman Decider on a 200-nodes

Outline 0	Motivation 000	Verifiable Computation	Memory Delegation	Conclusion O
Implement	ation Results	5		

- An end-to-end toolchain that compiles a subset of C into QSPs
- Proof size is 288 bytes regardless of what it is being computed
- Verification time is 10ms
- Prover complexity still not quite there in practice
 - About 60 times faster than previous proposals
 - Can run some lightweight computations

- Given a C program, they produce a circuit whose satisfiability encodes the correctness of execution of the program.
 - First the C program is compiled into machine code for TinyRAM
 - Then the TinyRam code is compiled into a circuit
- A QSP is built for this circuit
 - Use the generic concept of *Linear Interactive Proof*
 - could plug a more efficient LIP if one is found
- Slightly less efficient for the Verifier
 - Proof size 322 bytes
- Verification time dependent on x (from 103ms to 5s for long inputs)
 A bit more efficient for the Prover
 - Were able to handle a Traveling Salesman Decider on a 200-nodes

Outline 0	Motivation 000	Verifiable Computation	Memory Delegation	Conclusion 0
Implemen	tation Results	5		

- An end-to-end toolchain that compiles a subset of C into QSPs
- Proof size is 288 bytes regardless of what it is being computed
- Verification time is 10ms
- Prover complexity still not quite there in practice
 - About 60 times faster than previous proposals
 - Can run some lightweight computations

- Given a C program, they produce a circuit whose satisfiability encodes the correctness of execution of the program.
 - First the C program is compiled into machine code for TinyRAM
 - Then the TinyRam code is compiled into a circuit
- A QSP is built for this circuit
 - Use the generic concept of *Linear Interactive Proof*
 - could plug a more efficient LIP if one is found
- Slightly less efficient for the Verifier
 - Proof size 322 bytes
 - Verification time dependent on x (from 103ms to 5s for long inputs)
- A bit more efficient for the Prover
 - Were able to handle a Traveling Salesman Decider on a 200-nodes

Outline	Motivation	Verifiable Computation	Memory Delegation	Conclusion
0	000		•00000	O
Outsourci	ng Your Data	I		

- $\hfill \ensuremath{\: \ensuremath{\: }}$ Up to now we have considered the case of a client sending F and x to the server
 - Client's limitation is in computing time
 - \blacksquare Cannot compute F on its own
- What if the client's limitation is *storage*?
 - \blacksquare Client stores large quantity of data D with the server
 - later queries F on D and receives back F(D)
- Previous approaches do not work: they require the client to know the input

Outline	Motivation	Verifiable Computation	Memory Delegation	Conclusion
0	000		•00000	0
Outsourci	ng Your Data	ì		

- $\hfill \ensuremath{\: \ensuremath{\: }}$ Up to now we have considered the case of a client sending F and x to the server
 - Client's limitation is in computing time
 - \blacksquare Cannot compute F on its own
- What if the client's limitation is *storage*?
 - \blacksquare Client stores large quantity of data D with the server
 - later queries F on D and receives back F(D)
- Previous approaches do not work: they require the client to know the input

Outline	Motivation	Verifiable Computation	Memory Delegation	Conclusion
0	000		•00000	0
Outsourci	ng Your Data	ì		

- $\hfill \ensuremath{\: \ensuremath{\: }}$ Up to now we have considered the case of a client sending F and x to the server
 - Client's limitation is in computing time
 - \blacksquare Cannot compute F on its own
- What if the client's limitation is *storage*?
 - \blacksquare Client stores large quantity of data D with the server
 - \blacksquare later queries F on D and receives back F(D)
- Previous approaches do not work: they require the client to know the input

- Client stores $D = D_1, \ldots, D_n$ and $t_i = MAC_k(D_i)$.
 - \blacksquare Client only stores the short key k
- Later the client submits F
 - Server returns y = F(D) and t
 - Client accepts if and only if $t = MAC_k(y)$
 - \blacksquare Verification time may be as long as computing F focus on storage and bandwidth
- Original idea uses homomorphic encryption
 - Mostly of theoretical interest
- New ideas use "traditional" crypto (CF,GN)
 - Much more efficient
 - But only work for "shallow" circuits

- Client stores $D = D_1, \ldots, D_n$ and $t_i = MAC_k(D_i)$.
 - \blacksquare Client only stores the short key k
- Later the client submits F
 - Server returns y = F(D) and t
 - Client accepts if and only if $t = MAC_k(y)$
 - \blacksquare Verification time may be as long as computing F focus on storage and bandwidth
- Original idea uses homomorphic encryption
 - Mostly of theoretical interest
- New ideas use "traditional" crypto (CF,GN)
 - Much more efficient
 - But only work for "shallow" circuits

- Client stores $D = D_1, \ldots, D_n$ and $t_i = MAC_k(D_i)$.
 - \blacksquare Client only stores the short key k
- Later the client submits F
 - Server returns y = F(D) and t
 - Client accepts if and only if $t = MAC_k(y)$
 - Verification time may be as long as computing F focus on storage and bandwidth
- Original idea uses homomorphic encryption
 - Mostly of theoretical interest
- New ideas use "traditional" crypto (CF,GN)
 - Much more efficient
 - But only work for "shallow" circuits

- Client stores $D = D_1, \ldots, D_n$ and $t_i = MAC_k(D_i)$.
 - \blacksquare Client only stores the short key k
- Later the client submits F
 - Server returns y = F(D) and t
 - Client accepts if and only if $t = MAC_k(y)$
 - Verification time may be as long as computing F focus on storage and bandwidth
- Original idea uses homomorphic encryption
 - Mostly of theoretical interest
- New ideas use "traditional" crypto (CF,GN)
 - Much more efficient
 - But only work for "shallow" circuits

Outline	Motivation	Verifiable Computation	Memory Delegation	Conclusion
0	000		00●000	O
Proofs o	of Retrievabil	ity (JK)		

- Client stores a large file F with the server and wants to make sure that it can be retrieved without downloading the entire thing (e.g. auditing)
 - \blacksquare Client sends a short $\mathit{challenge}\ c$
 - \blacksquare Server responds with a short answer a
 - avoid reading the entire file to produce the answer
- A possible solution (A+,SW)
 - Encode the file F using an error correcting code F' = Encode(F)
 - Store each block F'_i with a *linearly homomorphic* MAC $t_i = MAC_k(F'_i)$
 - The client queries a small number (ℓ) of the blocks $F_{i_1} \dots F_{i_\ell}$ and also sends ℓ random coefficients $\lambda_1, \dots, \lambda_\ell$
 - \blacksquare The server sends back $\phi = \Sigma_j \lambda_j F_{i_j}$ and $t = \Sigma_j \lambda_j t_j$
 - The client accepts if and only if $t = MAC_k(\phi)$
- The scheme is very efficient
 - Linearly homomorphic MACs can be built from basic universal hash functions
 - Minimal storage overhead due to the error-correction expansion
 - Query complexity is quadratic in the security parameter

Outline	Motivation	Verifiable Computation	Memory Delegation	Conclusion
0	000		00●000	O
Proofs (of Retrievabil	ity (JK)		

- Client stores a large file F with the server and wants to make sure that it can be retrieved without downloading the entire thing (e.g. auditing)
 - \blacksquare Client sends a short challenge c
 - Server responds with a short *answer* a
 - avoid reading the entire file to produce the answer
- A possible solution (A+,SW)
 - Encode the file F using an error correcting code F' = Encode(F)
 - Store each block F'_i with a linearly homomorphic MAC $t_i = MAC_k(F'_i)$
 - The client queries a small number (ℓ) of the blocks $F_{i_1} \dots F_{i_\ell}$ and also sends ℓ random coefficients $\lambda_1, \dots, \lambda_\ell$
 - The server sends back $\phi = \Sigma_j \lambda_j F_{i_j}$ and $t = \Sigma_j \lambda_j t_j$
 - The client accepts if and only if $t = MAC_k(\phi)$
- The scheme is very efficient
 - Linearly homomorphic MACs can be built from basic universal hash functions
 - Minimal storage overhead due to the error-correction expansion
 - Query complexity is quadratic in the security parameter

Outline 0	Motivation 000	Verifiable Computation	Memory Delegation	Conclusion 0
Proofs	of Retrievabil	ity (JK)		

- Client stores a large file F with the server and wants to make sure that it can be retrieved without downloading the entire thing (e.g. auditing)
 - \blacksquare Client sends a short $\mathit{challenge}\ c$
 - Server responds with a short *answer* a
 - avoid reading the entire file to produce the answer
- A possible solution (A+,SW)
 - Encode the file F using an error correcting code F' = Encode(F)
 - Store each block F'_i with a linearly homomorphic MAC $t_i = MAC_k(F'_i)$
 - The client queries a small number (ℓ) of the blocks $F_{i_1} \dots F_{i_\ell}$ and also sends ℓ random coefficients $\lambda_1, \dots, \lambda_\ell$
 - \blacksquare The server sends back $\phi = \Sigma_j \lambda_j F_{i_j}$ and $t = \Sigma_j \lambda_j t_j$
 - The client accepts if and only if $t = MAC_k(\phi)$
- The scheme is very efficient
 - Linearly homomorphic MACs can be built from basic universal hash functions
 - Minimal storage overhead due to the error-correction expansion
 - Query complexity is quadratic in the security parameter

Outline	Motivation	Verifiable Computation	Memory Delegation	Conclusion
0	000		000●00	O
Verifiab	le Keyword S	earch (BGV)		

- Client stores a large text file $F = w_1, \ldots, w_n$ with the server
 - \blacksquare Client sends a keyword w
 - Server responds with yes/no
 - how can we efficiently verify the answer?
- Encode the file as the polynomial F(X) = Π_i(X − w_i)
 Note that F(w) = 0 if and only if w ∈ F
- Problem reduces to efficiently verifying the computation of a large degree polynomial.

Outline 0	Motivation 000	Verifiable Computation	Memory Delegation	Conclusion O
Verifiab	le Keyword S	earch (BGV)		

- Client stores a large text file $F = w_1, \ldots, w_n$ with the server
 - \blacksquare Client sends a keyword w
 - Server responds with yes/no
 - how can we efficiently verify the answer?
- Encode the file as the polynomial $F(X) = \prod_i (X w_i)$
 - Note that F(w) = 0 if and only if $w \in F$
- Problem reduces to efficiently verifying the computation of a large degree polynomial.

Outline	Motivation	Verifiable Computation	Memory Delegation	Conclusion
0	000		000●00	O
Verifiabl	e Keyword S	Search (BGV)		

- Client stores a large text file $F = w_1, \ldots, w_n$ with the server
 - \blacksquare Client sends a keyword w
 - Server responds with yes/no
 - how can we efficiently verify the answer?
- Encode the file as the polynomial $F(X) = \prod_i (X w_i)$
 - Note that F(w) = 0 if and only if $w \in F$
- Problem reduces to efficiently verifying the computation of a large degree polynomial.

Outline	Motivation	Verifiable Computation	Memory Delegation	Conclusion
0	000		0000●0	O
Verifiable	Computation	of Polynomials	(BGV)	

• Other applications besides Verifiable Keyword Search

- Client stores a high degree polynomial $F(X) = \Sigma a_i X^i$
 - Client sends a value x
 - Server responds y = F(x)
 - how can we efficiently verify the answer?

Store the MAC $t_i = ca_i + r_i$

- r_i are computed pseudorandomly, i.e. $r_i = PRF_k(i)$
- Client only stores random secret keys c, k
- Let R(X) be the polynomial defined by the r_i
- When the client queries the value x, the server returns
 y = Σ_ia_ixⁱ and t = Σ_it_ixⁱ
- The client checks that t = cy + R(x)
 - Note that this requires O(d) work where d is the degree of the poly
 - This can be reduced if we use *closed-form efficient* PRFs
 - Knowledge of the key k allows the computation of $\Sigma_i r_i x^i$ in o(d) time
 - We know how to build them from Diffie-Hellman type of assumptions

Outline	Motivation	Verifiable Computation	Memory Delegation	Conclusion
0	000		0000●0	O
Verifiab	le Computati	on of Polynomials ((BGV)	

- Other applications besides Verifiable Keyword Search
- Client stores a high degree polynomial $F(X) = \Sigma a_i X^i$
 - Client sends a value x
 - Server responds y = F(x)
 - how can we efficiently verify the answer?

• Store the MAC $t_i = ca_i + r_i$

- \hfill r_i are computed pseudorandomly, i.e. $r_i = PRF_k(i)$
- \blacksquare Client only stores random secret keys c,k
- \blacksquare Let R(X) be the polynomial defined by the r_i
- When the client queries the value x, the server returns $y = \sum_i a_i x^i$ and $t = \sum_i t_i x^i$
- The client checks that t = cy + R(x)
 - Note that this requires O(d) work where d is the degree of the poly
 - This can be reduced if we use *closed-form efficient* PRFs
 - Knowledge of the key k allows the computation of $\Sigma_i r_i x^i$ in o(d) time
 - We know how to build them from Diffie-Hellman type of assumptions

- Other applications besides Verifiable Keyword Search
- Client stores a high degree polynomial $F(X) = \Sigma a_i X^i$
 - Client sends a value x
 - Server responds y = F(x)
 - how can we efficiently verify the answer?
- Store the MAC $t_i = ca_i + r_i$
 - \hfill r_i are computed pseudorandomly, i.e. $r_i = PRF_k(i)$
 - \blacksquare Client only stores random secret keys c,k
 - \blacksquare Let R(X) be the polynomial defined by the r_i

• When the client queries the value x, the server returns • $y = \Sigma_i a_i x^i$ and $t = \Sigma_i t_i x^i$

• The client checks that t = cy + R(x)

- Note that this requires O(d) work where d is the degree of the poly
- This can be reduced if we use *closed-form efficient* PRFs
- Knowledge of the key k allows the computation of $\Sigma_i r_i x^i$ in o(d) time
- We know how to build them from Diffie-Hellman type of assumptions

- Other applications besides Verifiable Keyword Search
- Client stores a high degree polynomial $F(X) = \Sigma a_i X^i$
 - Client sends a value x
 - Server responds y = F(x)
 - how can we efficiently verify the answer?
- Store the MAC $t_i = ca_i + r_i$
 - r_i are computed pseudorandomly, i.e. $r_i = PRF_k(i)$
 - \blacksquare Client only stores random secret keys c,k
 - \blacksquare Let R(X) be the polynomial defined by the r_i
- When the client queries the value x, the server returns • $y = \Sigma_i a_i x^i$ and $t = \Sigma_i t_i x^i$
- The client checks that t = cy + R(x)
 - \blacksquare Note that this requires O(d) work where d is the degree of the poly
 - This can be reduced if we use *closed-form efficient* PRFs
 - Knowledge of the key k allows the computation of $\Sigma_i r_i x^i$ in o(d) time
 - We know how to build them from Diffie-Hellman type of assumptions

- Other applications besides Verifiable Keyword Search
- Client stores a high degree polynomial $F(X) = \Sigma a_i X^i$
 - Client sends a value x
 - Server responds y = F(x)
 - how can we efficiently verify the answer?
- Store the MAC $t_i = ca_i + r_i$
 - r_i are computed pseudorandomly, i.e. $r_i = PRF_k(i)$
 - \blacksquare Client only stores random secret keys c,k
 - \blacksquare Let R(X) be the polynomial defined by the r_i
- When the client queries the value x, the server returns

•
$$y = \sum_i a_i x^i$$
 and $t = \sum_i t_i x^i$

- The client checks that t = cy + R(x)
 - \blacksquare Note that this requires O(d) work where d is the degree of the poly
 - This can be reduced if we use *closed-form efficient* PRFs
 - Knowledge of the key k allows the computation of $\Sigma_i r_i x^i$ in o(d) time
 - We know how to build them from Diffie-Hellman type of assumptions

Outline	Motivation	Verifiable Computation	Memory Delegation	Conclusion
0	000		00000●	0
Dynamic S	Storage			

- A very important problem is how to deal with updates on the memory
 - without changing the secret state of the client, the server can always ignore updates
 - challenge: updates that do not require the client to re-authenticate large part of the server storage
- Merkle-trees allow to check individual memory locations which change over time
 - but not "global" verifications (proof of retrievability, verifiable keyword search)

Some progress on dynamic proofs of retrievability (CW,SSP)

Outline 0	Motivation 000	Verifiable Computation	Memory Delegation	Conclusion 0
Dynamic	Storage			

- A very important problem is how to deal with updates on the memory
 - without changing the secret state of the client, the server can always ignore updates
 - challenge: updates that do not require the client to re-authenticate large part of the server storage
- Merkle-trees allow to check individual memory locations which change over time
 - but not "global" verifications (proof of retrievability, verifiable keyword search)

Some progress on dynamic proofs of retrievability (CW,SSP)

Outline	Motivation	Verifiable Computation	Memory Delegation	Conclusion
0	000		00000●	0
Dynamic S	Storage			

- A very important problem is how to deal with updates on the memory
 - without changing the secret state of the client, the server can always ignore updates
 - challenge: updates that do not require the client to re-authenticate large part of the server storage
- Merkle-trees allow to check individual memory locations which change over time
 - but not "global" verifications (proof of retrievability, verifiable keyword search)

Some progress on dynamic proofs of retrievability (CW,SSP)

Outline 0	Motivation 000	Verifiable Computation	Memory Delegation	Conclusion ●
Future Di	irections			

- Multiple clients
 - Protect information from the other clients
 - Becomes secure multiparty computation with an added constraint
 - only one party has enough resources to compute the desired functionality
 - Leverage successes in SMC.
- General VC: Explore more realistic models of computation

e.g. RAM

Explore more pragmatic approaches

- Weaker security guarantee that rules out most likely forms of attacks e.g. program checking against bugs in the implementation
- Does the outsourcing of polynomials have larger applicability?
 - Alternatively, can we use the same idea of "closed form efficient" PRFs for other computations
- A more efficient general result for memory outsourcing/homomorphic MACs
- "Important" Computations, which would benefit from being outsourced:
 - Image processing
 - crypto operations

Outline 0	Motivation 000	Verifiable Computation	Memory Delegation	Conclusion ●
Future [Directions			

- Multiple clients
 - Protect information from the other clients
 - Becomes secure multiparty computation with an added constraint
 - only one party has enough resources to compute the desired functionality
 - Leverage successes in SMC.
- General VC: Explore more realistic models of computation
 - e.g. RAM

Explore more pragmatic approaches

- Weaker security guarantee that rules out most likely forms of attacks e.g. program checking against bugs in the implementation
- Does the outsourcing of polynomials have larger applicability?
 - Alternatively, can we use the same idea of "closed form efficient" PRFs for other computations
- A more efficient general result for memory outsourcing/homomorphic MACs
- "Important" Computations, which would benefit from being outsourced:
 - Image processing
 - crypto operations

Outline 0	Motivation 000	Verifiable Computation	Memory Delegation	Conclusion ●
Future [Directions			

- Multiple clients
 - Protect information from the other clients
 - Becomes secure multiparty computation with an added constraint
 - only one party has enough resources to compute the desired functionality
 - Leverage successes in SMC.
- General VC: Explore more realistic models of computation
 - e.g. RAM
- Explore more pragmatic approaches
 - Weaker security guarantee that rules out most likely forms of attacks e.g. program checking against bugs in the implementation
- Does the outsourcing of polynomials have larger applicability?
 - Alternatively, can we use the same idea of "closed form efficient" PRFs for other computations
- A more efficient general result for memory outsourcing/homomorphic MACs
- "Important" Computations, which would benefit from being outsourced:
 - Image processing
 - crypto operations

Outline 0	Motivation 000	Verifiable Computation	Memory Delegation	Conclusion ●
Future Di	irections			

- Multiple clients
 - Protect information from the other clients
 - Becomes secure multiparty computation with an added constraint
 - only one party has enough resources to compute the desired functionality
 - Leverage successes in SMC.
- General VC: Explore more realistic models of computation
 - e.g. RAM
- Explore more pragmatic approaches
 - Weaker security guarantee that rules out most likely forms of attacks e.g. program checking against bugs in the implementation
- Does the outsourcing of polynomials have larger applicability?
 - Alternatively, can we use the same idea of "closed form efficient" PRFs for other computations
- A more efficient general result for memory outsourcing/homomorphic MACs
- "Important" Computations, which would benefit from being outsourced:
 - Image processing
 - crypto operations

Outline 0	Motivation 000	Verifiable Computation	Memory Delegation	Conclusion ●
Future Di	irections			

- Multiple clients
 - Protect information from the other clients
 - Becomes secure multiparty computation with an added constraint
 - only one party has enough resources to compute the desired functionality
 - Leverage successes in SMC.
- General VC: Explore more realistic models of computation
 - e.g. RAM
- Explore more pragmatic approaches
 - Weaker security guarantee that rules out most likely forms of attacks e.g. program checking against bugs in the implementation
- Does the outsourcing of polynomials have larger applicability?
 - Alternatively, can we use the same idea of "closed form efficient" PRFs for other computations
- A more efficient general result for memory outsourcing/homomorphic MACs
- "Important" Computations, which would benefit from being outsourced:
 - Image processing
 - crypto operations

Outline 0	Motivation 000	Verifiable Computation	Memory Delegation	Conclusion ●
Future Di	irections			

- Multiple clients
 - Protect information from the other clients
 - Becomes secure multiparty computation with an added constraint
 - only one party has enough resources to compute the desired functionality
 - Leverage successes in SMC.
- General VC: Explore more realistic models of computation
 - e.g. RAM
- Explore more pragmatic approaches
 - Weaker security guarantee that rules out most likely forms of attacks e.g. program checking against bugs in the implementation
- Does the outsourcing of polynomials have larger applicability?
 - Alternatively, can we use the same idea of "closed form efficient" PRFs for other computations
- A more efficient general result for memory outsourcing/homomorphic MACs
- "Important" Computations, which would benefit from being outsourced:
 - Image processing
 - crypto operations