

Towards Trustworthy Clouds

Cloud computing?

- Cloud services are convenient
 - -No investment cost
 - Pay only for consumption
 - Scalable
 - -No skills needed
 - -Access from everywhere
 - Standardized services

- Clouds pose threats
 - Unknown exposure
 - Inherent risk of outsourcing
 - -No established contracts
 - -Loss of control
 - -Fast and reliable network needed
 - Customization not possible

Cloud computing security

Security for the provider

- Isolation of different clients
 - Enforcement
 - -Verification
- Protection of computing platform (TCB)
 - Integrity of hypervisors, kernels, and applications
 - -Strong enforcement with trusted hardware
- Prevention of insider attacks
 - Operators have reduced privileges
 - Audits and logging
- Guarantees for service quality
 - Prevent abuse and DOS attacks by clients

How to implement Multi-Tenancy (MT) isolation?

Example: Database multi-tenancy

Platform isolation enforcement and verification

- Security analysis for virtualized environments (SAVE) [BGSE11]
 - -Verify absence of connections across security zones

[See previous presentation in workshop]

Platform integrity enforcement

- Trusted-computing-based remote attestation
 - -Verify integrity of remote (cloud) service platform

Security for clients

- Prevention of abuse by provider
 - Restriction of administrative privileges
 - Consideration of "legal" attacks by provider's jurisdiction
- Encryption of data and computations
 - -Easy for stored data
 - Challenging for remotely running programs
- Integrity guarantees for responses
- High availability despite service outages

Computing on encrypted data

- How can one manipulate encrypted data?
- How can a computer run a program blindly?
- Celebrated research topic in cryptography
 - Identified in 1978
 - -Yao's millionaires problem (1986)
- Secure two-party computation
 - -Garbled circuits
 - Quite practical today for limited functions
 - -Fully Homomorphic Encryption
 - Breakthrough result (Gentry 09) but very far from practical

IBM

Protection for cryptographic operations in VMs "Cryptography-as-a-Service" [BBINS13]

- Crypto VM protected by TPM and trusted VM builder
- Shields client-owned cryptographic keys and operations from mgmt VM

- TPM verifies hypervisor and Trusted builder VM
- Clients know sources of trusted components
- Client-owned cryptographic keys not exposed to cloud mgmt domain
- Examples
 - Encryption for virtual disk images or VMIs in cloud storage
 - Communication encryption (TLS, VPN ...)

Trusted virtual domains [GJPSvDC05]

- TPM-enhanced security kernel in hypervisor
 - Secure attestation protects interaction with remote hosts
- Domains are isloated
 - Encryption of all traffic between VMs inside domain
- Realized in TClouds' TrustedInfrastructure prototype

Higher resilience from a cloud-of-clouds

- Move cloud services to a cloud-of-clouds
- Replicate data and services over multiple providers
 - Exploit independence among providers
 - Deliver one integrated and resilient service using distributed protocols
- TClouds components DepSky, BFT-SMaRt, and CheapBFT

TClouds - Trustworthy Clouds

The TClouds EU/FP7 research project (2010-2013)

TClouds geographical overview

Consortium

Project Entry Date: April 1, 2012

© 2013 IBM Corporation

TClouds architecture overview

The TClouds Trustworthy Cloud Platform

TClouds demonstration scenarios

Home healthcare

- Patient-centered home health-care functions
- Supporting multiple actors, remote monitoring and diagnosis of patients
- Support the lifecycle of a complete drug prescription via web-based cloud application
- Partners Ospedale San Raffaele (IT) and Philips (NL)

Smart lighting system

- Control over public infrastructure in smart grid from a cloud environment
- Collect SCADA data, manage and monitor municipality street lights
- Partners Energias de Portugal (PT) and EFACEC Engenharia (PT)

Conclusion

- Cloud security has two goals
 - Protect the provider
 - Protect the clients

These two goals are sometimes orthogonal, sometimes dependent

- TClouds integrates multiple security technologies
 - Trusted computing technology
 - Exploit hardware root-of-trust
 - Cryptography for encryption, integrity protection
 - Data-at-rest protection
 - Replication increases resilience of data and services
 - Deployment in a cloud-of-clouds

Thank you

- Christian Cachin
 - -www.zurich.ibm.com/~cca/
- Security research
 - -www.zurich.ibm.com/csc/security/
- IBM Research Zurich
 - -www.zurich.ibm.com
- Trustworthy Clouds Privacy and Resilience for Internet-scale Critical Infrastructure, EU FP7 No. 257243
 - -www.tclouds-project.eu

